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ultrahomogneous structures

ultrahomogeneous structure

We say that a countable structure A is ultrahomogeneous, if each isomorphism
between finitely generated substructures of A can be extended to an
automorphism of A.
A is ultrahomogeneous iff A is a Fräıssé limit.

Age

Let K be a class of finitely generated L-structures. K is called age if it has

Hereditary property (HP): if A ∈ K and B is finitely generated
substructure of A, then B ∈ K.

Joint embedding property (JEP): if A,B ∈ K, then there is C ∈ K such
that A and B are embeddable in C .

Amalgamation property (AP): if A,B,C ∈ K and e : A→ B and
f : A→ C , then there are D ∈ K and g : B → D and h : C → D such
that ge = hf .
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Main result

Fräıssé theorem

ultrahomogeneous structures

A is ultrahomogeneous, if each isomorphism between finitely generated
substructures of A can be extended to an automorphism of A.

Age of ultrahomogeneous structure

Let K be a family of all finitely generated substructures of ultrahomogeneous
structure A. Then K is an age (of A).

Fräıssé theorem

Let L be a countable language and K be a countable age of L-structures.
Then there is L-structure A, unique up to isomorphism, such that

A is countable.

K is an age of A.

A is ultrahomogeneous.

A is called a Fräıssé limit of K.
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Some examples of Fräıssé limits

finite linear orders

If K = {finite linear orders}, then (Q,≤) is a Fräıssé limit of K.

finite graphs

Random graph G is a Fräıssé limit of K = {finite graphs}.

finite groups

Hall’s universal locally finite group is a Fräıssé limit of {finite groups}.

finite groups where every element has order 2⊕
i∈N Z2 is a Fräıssé limit of {finite groups where every element has order 2}.

finitely generated torsion-free abelian groups⊕
i∈N Q is a Fräıssé limit of {finitely generated torsion-free abelian groups}.
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Schmerl’s characterization of countable homogeneous partial orders

Let 1 ≤ n ≤ ω.Let An := {0, 1, . . . , n − 1}. Define < on An so that for no
x , y ∈ An is x < y .Let Bn = An ×Q. Define < on Bn so that (k, p) < (m, q) iff
k = m and p < q. Let Cn = Bn and define < on Cn so that (k, p) < (m, q) iff
p < q. Finally, let (D, <) be the universal countable homogeneous partially
ordered set, that is a Fräıssé limit of all finite partial orders.

Schmerl, 1979

Let (H, <) be a countable partially ordered set. Then (H, <) is
ultrahomogeneous iff it is isomorphic to one of the following:

(a) (An, <) for 1 ≤ n ≤ ω;

(b) (Bn, <) for 1 ≤ n ≤ ω;

(c) (Cn, <) for 2 ≤ n ≤ ω;

(d) (D, <).

Moreover, no two of the partially ordered sets listed above are isomorphic.
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Infinite countable homogeneous partial orders are freely topologically
2-generated

A topological group G is freely topologically 2-generated if there are two
elements f , g ∈ G such that 〈f , g〉 is a dense free subgroup of G .
Basic open sets – {f ∈ Aut(X ) : h ⊂ f } where h is a partial isomorphism of X .

Theorem

Let n ≤ ω. The following groups Aut(Aω) = S∞, Aut(Bn), Aut(Cn) and
Aut(D) are freely topologically 2-generated.

The case of S∞ and Aut(Q) = Aut(B1) was deeply investigated by Darji and
Mitchell.

Szymon G la̧b, Filip Strobin and Przemys law Gordinowicz Dense free subgroups of automorphism groups of homogeneous partially ordered sets



Fräıssé limit
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Main result

Infinite countable homogeneous partial orders are freely topologically
2-generated

Enumerate all words by wk , all partial isomorphisms by hk , and all elements
from Bn (or Cn or D) by qk . We will define the sequence of partial
isomorphisms fi , gi such that

(a) fi−1 ⊂ fi and gi−1 ⊂ gi ;

(b) qi ∈ dom(fi ) ∩ rng(fi ) ∩ dom(gi ) ∩ rng(gi );

(c) there exists a word w such that dom(hi ) ⊂ dom(w(fi , gi )) and
w(fi , gi )| dom(hi ) = hi ;

(d) there exists x ∈ dom(wi (fi , gi )) such that wi (fi , gi )(x) 6= x .

(f) some technical assumption on fi .

f =
⋃

i fi and g =
⋃

i gi
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Fräıssé limit
Four types of countable homogeneous partial orders

Main result

Cn, n ∈ N or n = ω

Let Cn = {0, 1, . . . , n − 1} ×Q. Define < on Cn so that (k, p) < (m, q) iff
p < q. F ∈ Aut(Cn)<ω iff F (k, q) = (τq(k), f (q)) where τq ∈ S<ω

n and
f ∈ Aut(Q)<ω. Technical assumption – F is positive, that is f (q) > q.

Lemma

Let M ∈ Q, X be a finite subset of Cn and F ∈ Aut(Cn)<ω be positive. Then
there is k and extension F0 of F such that π2(F k

0 (X )) > M.

Assume that F ∈ Aut(Cn)<ω is positive and G ,H ∈ Aut(Cn)<ω.Let M ∈ Q be
’above’ X the union of domains and ranges of G ,F and H. Using Lemma for
X find k and extension F0 of F such that F k

0 (dom(H)) is ’above’ M. Define
the extension G1 of G on F k

0 (dom(H)) by G1(x) = F k
1 ◦ H ◦ F−k

1 (x).Then
H = F−k

1 ◦ G1 ◦ F k
1 | dom(H) = w(F1,G1)| dom(H) where w(a, b) = a−kbak .

Theorem

There are F ,G ∈ Aut(Cn) such that 〈F ,G〉 is a free group and
{F kGF−k : k ∈ Z} is dense in Aut(Cn).
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Main result

Let G be a Polish group.

G × Gm 3 (g , h̄) 7→ (gh1g−1, . . . , ghmg−1) ∈ Gm

is the diagonal action of G on Gm. We say that h̄ ∈ Gm is cyclically dense for
the diagonal action of G on Gm if for some g ∈ G ,
{(g kh1g−k , . . . , g khmg−k) : k ∈ Z} is dense in Gm.

Theorem

The set of all cyclically dense H̄ ∈ Aut(Cn)m for the diagonal action of Aut(Cn)
on Aut(Cn)m is residual in Aut(Cn)m.

The same is true for Aut(Bω) and Aut(D), but it is not true for Aut(Bn),
1 < n < ω.
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