Szymon Głąb

Dense free subgroups of automorphism groups of homogeneous partially ordered sets

with Przemysław Gordinowicz, Filip Strobin

Institute of Mathematics, Łódź University of Technology

ultrahomogeneous structure

We say that a countable structure A is *ultrahomogeneous*, if each isomorphism between finitely generated substructures of A can be extended to an automorphism of A.

A is ultrahomogeneous iff A is a Fraïssé limit.

Age

Let $\mathcal K$ be a class of finitely generated $\mathcal L$ -structures. $\mathcal K$ is called age if it has

- Hereditary property (HP): if A ∈ K and B is finitely generated substructure of A, then B ∈ K.
- Joint embedding property (JEP): if A, B ∈ K, then there is C ∈ K such that A and B are embeddable in C.
- Amalgamation property (AP): if A, B, C ∈ K and e : A → B and f : A → C, then there are D ∈ K and g : B → D and h : C → D such that ge = hf.

・ 同 ト ・ ヨ ト ・ ヨ ト

ultrahomogeneous structure

We say that a countable structure A is *ultrahomogeneous*, if each isomorphism between finitely generated substructures of A can be extended to an automorphism of A.

A is ultrahomogeneous iff A is a Fraïssé limit.

Age

Let ${\cal K}$ be a class of finitely generated ${\cal L}$ -structures. ${\cal K}$ is called age if it has

- Hereditary property (HP): if A ∈ K and B is finitely generated substructure of A, then B ∈ K.
- Joint embedding property (JEP): if A, B ∈ K, then there is C ∈ K such that A and B are embeddable in C.
- Amalgamation property (AP): if A, B, C ∈ K and e : A → B and f : A → C, then there are D ∈ K and g : B → D and h : C → D such that ge = hf.

・ 同 ト ・ ヨ ト ・ ヨ ト

ultrahomogeneous structure

We say that a countable structure A is *ultrahomogeneous*, if each isomorphism between finitely generated substructures of A can be extended to an automorphism of A.

A is ultrahomogeneous iff A is a Fraïssé limit.

Age

Let ${\mathcal K}$ be a class of finitely generated ${\mathcal L}\text{-structures}.$ ${\mathcal K}$ is called age if it has

- Hereditary property (HP): if A ∈ K and B is finitely generated substructure of A, then B ∈ K.
- Joint embedding property (JEP): if A, B ∈ K, then there is C ∈ K such that A and B are embeddable in C.
- Amalgamation property (AP): if A, B, C ∈ K and e : A → B and f : A → C, then there are D ∈ K and g : B → D and h : C → D such that ge = hf.

ultrahomogeneous structure

We say that a countable structure A is *ultrahomogeneous*, if each isomorphism between finitely generated substructures of A can be extended to an automorphism of A.

A is ultrahomogeneous iff A is a Fraïssé limit.

Age

Let ${\mathcal K}$ be a class of finitely generated ${\mathcal L}\text{-structures}.$ ${\mathcal K}$ is called age if it has

- Hereditary property (HP): if A ∈ K and B is finitely generated substructure of A, then B ∈ K.
- Joint embedding property (JEP): if A, B ∈ K, then there is C ∈ K such that A and B are embeddable in C.
- Amalgamation property (AP): if $A, B, C \in \mathcal{K}$ and $e : A \to B$ and $f : A \to C$, then there are $D \in \mathcal{K}$ and $g : B \to D$ and $h : C \to D$ such that ge = hf.

ultrahomogeneous structure

We say that a countable structure A is *ultrahomogeneous*, if each isomorphism between finitely generated substructures of A can be extended to an automorphism of A.

A is ultrahomogeneous iff A is a Fraïssé limit.

Age

Let ${\mathcal K}$ be a class of finitely generated ${\mathcal L}\text{-structures}.$ ${\mathcal K}$ is called age if it has

- Hereditary property (HP): if A ∈ K and B is finitely generated substructure of A, then B ∈ K.
- Joint embedding property (JEP): if A, B ∈ K, then there is C ∈ K such that A and B are embeddable in C.
- Amalgamation property (AP): if $A, B, C \in \mathcal{K}$ and $e : A \to B$ and $f : A \to C$, then there are $D \in \mathcal{K}$ and $g : B \to D$ and $h : C \to D$ such that ge = hf.

ultrahomogeneous structure

We say that a countable structure A is *ultrahomogeneous*, if each isomorphism between finitely generated substructures of A can be extended to an automorphism of A.

A is ultrahomogeneous iff A is a Fraïssé limit.

Age

Let ${\mathcal K}$ be a class of finitely generated ${\mathcal L}\text{-structures}.$ ${\mathcal K}$ is called age if it has

- Hereditary property (HP): if A ∈ K and B is finitely generated substructure of A, then B ∈ K.
- Joint embedding property (JEP): if A, B ∈ K, then there is C ∈ K such that A and B are embeddable in C.
- Amalgamation property (AP): if $A, B, C \in \mathcal{K}$ and $e : A \rightarrow B$ and $f : A \rightarrow C$, then there are $D \in \mathcal{K}$ and $g : B \rightarrow D$ and $h : C \rightarrow D$ such that ge = hf.

A 35 b

ultrahomogeneous structures

A is *ultrahomogeneous*, if each isomorphism between finitely generated substructures of A can be extended to an automorphism of A.

Age of ultrahomogeneous structure

Let \mathcal{K} be a family of all finitely generated substructures of ultrahomogeneous structure A. Then \mathcal{K} is an age (of A).

Fraïssé theorem

Let \mathcal{L} be a countable language and \mathcal{K} be a countable age of \mathcal{L} -structures. Then there is \mathcal{L} -structure A, unique up to isomorphism, such that

- A is countable.
- \mathcal{K} is an age of A.
- A is ultrahomogeneous.
- A is called a *Fraissé limit* of \mathcal{K} .

A (1) > A (1) > A

ultrahomogeneous structures

A is *ultrahomogeneous*, if each isomorphism between finitely generated substructures of A can be extended to an automorphism of A.

Age of ultrahomogeneous structure

Let \mathcal{K} be a family of all finitely generated substructures of ultrahomogeneous structure A. Then \mathcal{K} is an age (of A).

Fraïssé theorem

Let \mathcal{L} be a countable language and \mathcal{K} be a countable age of \mathcal{L} -structures. Then there is \mathcal{L} -structure A, unique up to isomorphism, such that

- A is countable.
- \mathcal{K} is an age of A.
- A is ultrahomogeneous.
- A is called a *Fraissé limit* of \mathcal{K} .

< 🗇 🕨 < 🖻 🕨 <

ultrahomogeneous structures

A is *ultrahomogeneous*, if each isomorphism between finitely generated substructures of A can be extended to an automorphism of A.

Age of ultrahomogeneous structure

Let \mathcal{K} be a family of all finitely generated substructures of ultrahomogeneous structure A. Then \mathcal{K} is an age (of A).

Fraïssé theorem

Let \mathcal{L} be a countable language and \mathcal{K} be a countable age of \mathcal{L} -structures. Then there is \mathcal{L} -structure A, unique up to isomorphism, such that

- A is countable.
- \mathcal{K} is an age of A.
- A is ultrahomogeneous
- A is called a *Fraïssé limit* of \mathcal{K} .

ultrahomogeneous structures

A is *ultrahomogeneous*, if each isomorphism between finitely generated substructures of A can be extended to an automorphism of A.

Age of ultrahomogeneous structure

Let \mathcal{K} be a family of all finitely generated substructures of ultrahomogeneous structure A. Then \mathcal{K} is an age (of A).

Fraïssé theorem

Let \mathcal{L} be a countable language and \mathcal{K} be a countable age of \mathcal{L} -structures. Then there is \mathcal{L} -structure A, unique up to isomorphism, such that

- A is countable.
- $\mathcal K$ is an age of A.
- A is ultrahomogeneous.

A is called a *Fraissé limit* of \mathcal{K} .

ultrahomogeneous structures

A is *ultrahomogeneous*, if each isomorphism between finitely generated substructures of A can be extended to an automorphism of A.

Age of ultrahomogeneous structure

Let \mathcal{K} be a family of all finitely generated substructures of ultrahomogeneous structure A. Then \mathcal{K} is an age (of A).

Fraïssé theorem

Let \mathcal{L} be a countable language and \mathcal{K} be a countable age of \mathcal{L} -structures. Then there is \mathcal{L} -structure A, unique up to isomorphism, such that

- A is countable.
- \mathcal{K} is an age of A.
- A is ultrahomogeneous.

A is called a *Fraïssé limit* of \mathcal{K} .

Some examples of Fraïssé limits

finite linear orders

If $\mathcal{K} = \{$ finite linear orders $\}$, then (\mathbb{Q}, \leq) is a Fraïssé limit of \mathcal{K} .

finite graphs

Random graph \mathbb{G} is a Fraïssé limit of $\mathcal{K} = \{$ finite graphs $\}$.

finite groups

Hall's universal locally finite group is a Fraïssé limit of {finite groups}.

finite groups where every element has order 2

 $\bigoplus_{i\in\mathbb{N}}\mathbb{Z}_2$ is a Fraissé limit of {finite groups where every element has order 2}.

finitely generated torsion-free abelian groups

 $\bigoplus_{i \in \mathbb{N}} \mathbb{Q}$ is a Fraïssé limit of {finitely generated torsion-free abelian groups}.

Szymon Głąb, Filip Strobin and Przemysław Gordinowicz Dense free subgroups of automorphism groups of homogeneous partially order

Some examples of Fraïssé limits

finite linear orders

If $\mathcal{K} = \{$ finite linear orders $\}$, then (\mathbb{Q}, \leq) is a Fraïssé limit of \mathcal{K} .

finite graphs

Random graph \mathbb{G} is a Fraïssé limit of $\mathcal{K} = \{$ finite graphs $\}$.

finite groups

Hall's universal locally finite group is a Fraïssé limit of {finite groups}.

finite groups where every element has order 2

 $\bigoplus_{i \in \mathbb{N}} \mathbb{Z}_2$ is a Fraissé limit of {finite groups where every element has order 2}.

finitely generated torsion-free abelian groups

 $\bigoplus_{i \in \mathbb{N}} \mathbb{Q}$ is a Fraïssé limit of {finitely generated torsion-free abelian groups}.

Szymon Głąb, Filip Strobin and Przemysław Gordinowicz Dense free subgroups of automorphism groups of homogeneous partially order

< 回 > < 三 > < 三 >

Some examples of Fraïssé limits

finite linear orders

If $\mathcal{K} = \{$ finite linear orders $\}$, then (\mathbb{Q}, \leq) is a Fraïssé limit of \mathcal{K} .

finite graphs

Random graph \mathbb{G} is a Fraïssé limit of $\mathcal{K} = \{$ finite graphs $\}$.

finite groups

Hall's universal locally finite group is a Fraïssé limit of {finite groups}.

finite groups where every element has order 2

 $\bigoplus_{i \in \mathbb{N}} \mathbb{Z}_2$ is a Fraissé limit of {finite groups where every element has order 2}.

finitely generated torsion-free abelian groups

 $\bigoplus_{i \in \mathbb{N}} \mathbb{Q}$ is a Fraïssé limit of {finitely generated torsion-free abelian groups}.

< 回 > < 三 > < 三 >

Some examples of Fraïssé limits

finite linear orders

If $\mathcal{K} = \{$ finite linear orders $\}$, then (\mathbb{Q}, \leq) is a Fraïssé limit of \mathcal{K} .

finite graphs

Random graph \mathbb{G} is a Fraïssé limit of $\mathcal{K} = \{$ finite graphs $\}$.

finite groups

Hall's universal locally finite group is a Fraïssé limit of {finite groups}.

finite groups where every element has order 2

 $\bigoplus_{i \in \mathbb{N}} \mathbb{Z}_2$ is a Fraissé limit of {finite groups where every element has order 2}.

finitely generated torsion-free abelian groups

 $\bigoplus_{i\in\mathbb{N}}\mathbb{Q}$ is a Fraïssé limit of {finitely generated torsion-free abelian groups}.

(4回) (4回) (日)

Some examples of Fraïssé limits

finite linear orders

If $\mathcal{K} = \{$ finite linear orders $\}$, then (\mathbb{Q}, \leq) is a Fraïssé limit of \mathcal{K} .

finite graphs

Random graph \mathbb{G} is a Fraïssé limit of $\mathcal{K} = \{$ finite graphs $\}$.

finite groups

Hall's universal locally finite group is a Fraïssé limit of {finite groups}.

finite groups where every element has order 2

 $\bigoplus_{i \in \mathbb{N}} \mathbb{Z}_2$ is a Fraïssé limit of {finite groups where every element has order 2}.

finitely generated torsion-free abelian groups

 $\bigoplus_{i \in \mathbb{N}} \mathbb{Q}$ is a Fraissé limit of {finitely generated torsion-free abelian groups}.

Szymon Głąb, Filip Strobin and Przemysław Gordinowicz Dense free subgroups of automorphism groups of homogeneous partially order

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $1 \le n \le \omega$.Let $A_n := \{0, 1, ..., n-1\}$. Define < on A_n so that for no $x, y \in A_n$ is x < y.Let $B_n = A_n \times \mathbb{Q}$. Define < on B_n so that (k, p) < (m, q) iff k = m and p < q. Let $C_n = B_n$ and define < on C_n so that (k, p) < (m, q) iff p < q. Finally, let (D, <) be the universal countable homogeneous partially ordered set, that is a Fraïssé limit of all finite partial orders.

Schmerl, 1979

Let (H, <) be a countable partially ordered set. Then (H, <) is ultrahomogeneous iff it is isomorphic to one of the following:

(a)
$$(A_n, <)$$
 for $1 \le n \le \omega$;

(b)
$$(B_n, <)$$
 for $1 \le n \le \omega$;

(c)
$$(C_n, <)$$
 for $2 \le n \le \omega$;

(d)
$$(D, <)$$

Moreover, no two of the partially ordered sets listed above are isomorphic.

Schmerl's characterization of countable homogeneous partial orders

Let $1 \le n \le \omega$.Let $A_n := \{0, 1, \dots, n-1\}$. Define < on A_n so that for no

 $x, y \in A_n$ is x < y.Let $B_n = A_n \times \mathbb{Q}$. Define < on B_n so that (k, p) < (m, q) iff k = m and p < q. Let $C_n = B_n$ and define < on C_n so that (k, p) < (m, q) iff p < q. Finally, let (D, <) be the universal countable homogeneous partially ordered set, that is a Fraïssé limit of all finite partial orders.

Schmerl, 1979

Let (H, <) be a countable partially ordered set. Then (H, <) is ultrahomogeneous iff it is isomorphic to one of the following:

(a)
$$(A_n, <)$$
 for $1 \le n \le \omega$;

(b)
$$(B_n, <)$$
 for $1 \le n \le \omega$;

(c)
$$(C_n, <)$$
 for $2 \le n \le \omega$;

(d)
$$(D, <)$$

Moreover, no two of the partially ordered sets listed above are isomorphic.

Let $1 \le n \le \omega$.Let $A_n := \{0, 1, ..., n-1\}$. Define < on A_n so that for no $x, y \in A_n$ is x < y.Let $B_n = A_n \times \mathbb{Q}$. Define < on B_n so that (k, p) < (m, q) iff k = m and p < q. Let $C_n = B_n$ and define < on C_n so that (k, p) < (m, q) iff p < q. Finally, let (D, <) be the universal countable homogeneous partially ordered set, that is a Fraïssé limit of all finite partial orders.

Schmerl, 1979

Let (H, <) be a countable partially ordered set. Then (H, <) is ultrahomogeneous iff it is isomorphic to one of the following:

(a)
$$(A_n, <)$$
 for $1 \le n \le \omega$;

(b)
$$(B_n, <)$$
 for $1 \le n \le \omega$;

(c)
$$(C_n, <)$$
 for $2 \le n \le \omega$;

(d)
$$(D, <)$$

Moreover, no two of the partially ordered sets listed above are isomorphic.

Let $1 \le n \le \omega$.Let $A_n := \{0, 1, ..., n-1\}$. Define < on A_n so that for no $x, y \in A_n$ is x < y.Let $B_n = A_n \times \mathbb{Q}$. Define < on B_n so that (k, p) < (m, q) iff k = m and p < q. Let $C_n = B_n$ and define < on C_n so that (k, p) < (m, q) iff p < q. Finally, let (D, <) be the universal countable homogeneous partially ordered set, that is a Fraïssé limit of all finite partial orders.

Schmerl, 1979

Let (H, <) be a countable partially ordered set. Then (H, <) is ultrahomogeneous iff it is isomorphic to one of the following:

(a)
$$(A_n, <)$$
 for $1 \le n \le \omega$;

(b)
$$(B_n, <)$$
 for $1 \le n \le \omega$;

(c)
$$(C_n, <)$$
 for $2 \le n \le \omega$;

(d)
$$(D, <)$$

Moreover, no two of the partially ordered sets listed above are isomorphic.

Let $1 \le n \le \omega$.Let $A_n := \{0, 1, ..., n-1\}$. Define < on A_n so that for no $x, y \in A_n$ is x < y.Let $B_n = A_n \times \mathbb{Q}$. Define < on B_n so that (k, p) < (m, q) iff k = m and p < q. Let $C_n = B_n$ and define < on C_n so that (k, p) < (m, q) iff p < q. Finally, let (D, <) be the universal countable homogeneous partially ordered set, that is a Fraïssé limit of all finite partial orders.

Schmerl, 1979

Let (H, <) be a countable partially ordered set. Then (H, <) is ultrahomogeneous iff it is isomorphic to one of the following:

(a)
$$(A_n, <)$$
 for $1 \le n \le \omega$;

(b)
$$(B_n, <)$$
 for $1 \le n \le \omega$;

(c)
$$(C_n, <)$$
 for $2 \le n \le \omega$;

(d)
$$(D, <)$$

Moreover, no two of the partially ordered sets listed above are isomorphic.

くぼう くうり くうり

Let $1 \le n \le \omega$.Let $A_n := \{0, 1, ..., n-1\}$. Define < on A_n so that for no $x, y \in A_n$ is x < y.Let $B_n = A_n \times \mathbb{Q}$. Define < on B_n so that (k, p) < (m, q) iff k = m and p < q. Let $C_n = B_n$ and define < on C_n so that (k, p) < (m, q) iff p < q. Finally, let (D, <) be the universal countable homogeneous partially ordered set, that is a Fraïssé limit of all finite partial orders.

Schmerl, 1979

Let (H, <) be a countable partially ordered set. Then (H, <) is ultrahomogeneous iff it is isomorphic to one of the following:

(a)
$$(A_n, <)$$
 for $1 \le n \le \omega$;

(b)
$$(B_n, <)$$
 for $1 \le n \le \omega$;

(c)
$$(C_n, <)$$
 for $2 \le n \le \omega$;

(d)
$$(D, <)$$
.

Moreover, no two of the partially ordered sets listed above are isomorphic.

Let $1 \le n \le \omega$.Let $A_n := \{0, 1, ..., n-1\}$. Define < on A_n so that for no $x, y \in A_n$ is x < y.Let $B_n = A_n \times \mathbb{Q}$. Define < on B_n so that (k, p) < (m, q) iff k = m and p < q. Let $C_n = B_n$ and define < on C_n so that (k, p) < (m, q) iff p < q. Finally, let (D, <) be the universal countable homogeneous partially ordered set, that is a Fraïssé limit of all finite partial orders.

Schmerl, 1979

Let (H, <) be a countable partially ordered set. Then (H, <) is ultrahomogeneous iff it is isomorphic to one of the following:

(a)
$$(A_n, <)$$
 for $1 \le n \le \omega$;

(b)
$$(B_n, <)$$
 for $1 \le n \le \omega$;

(c)
$$(C_n, <)$$
 for $2 \le n \le \omega$;

(d)
$$(D, <)$$

Moreover, no two of the partially ordered sets listed above are isomorphic.

Infinite countable homogeneous partial orders are freely topologically 2-generated

A topological group G is freely topologically 2-generated if there are two elements $f, g \in G$ such that $\langle f, g \rangle$ is a dense free subgroup of G. Basic open sets $-\{f \in Aut(X) : h \subset f\}$ where h is a partial isomorphism of X

Theorem

Let $n \leq \omega$. The following groups $Aut(A_{\omega}) = S_{\infty}$, $Aut(B_n)$, $Aut(C_n)$ and Aut(D) are freely topologically 2-generated.

The case of S_{∞} and $Aut(\mathbb{Q}) = Aut(B_1)$ was deeply investigated by Darji and Mitchell.

伺 と く ヨ と く ヨ と

Infinite countable homogeneous partial orders are freely topologically 2-generated

A topological group G is freely topologically 2-generated if there are two elements $f, g \in G$ such that $\langle f, g \rangle$ is a dense free subgroup of G. Basic open sets – $\{f \in Aut(X) : h \subset f\}$ where h is a partial isomorphism of X.

Theorem

Let $n \leq \omega$. The following groups $Aut(A_{\omega}) = S_{\infty}$, $Aut(B_n)$, $Aut(C_n)$ and Aut(D) are freely topologically 2-generated.

The case of S_{∞} and $Aut(\mathbb{Q}) = Aut(B_1)$ was deeply investigated by Darji and Mitchell.

Infinite countable homogeneous partial orders are freely topologically 2-generated

A topological group G is freely topologically 2-generated if there are two elements $f, g \in G$ such that $\langle f, g \rangle$ is a dense free subgroup of G. Basic open sets – $\{f \in Aut(X) : h \subset f\}$ where h is a partial isomorphism of X.

Theorem

Let $n \leq \omega$. The following groups $Aut(A_{\omega}) = S_{\infty}$, $Aut(B_n)$, $Aut(C_n)$ and Aut(D) are freely topologically 2-generated.

The case of S_{∞} and $\operatorname{Aut}(\mathbb{Q}) = \operatorname{Aut}(B_1)$ was deeply investigated by Darji and Mitchell.

Infinite countable homogeneous partial orders are freely topologically 2-generated

A topological group G is freely topologically 2-generated if there are two elements $f, g \in G$ such that $\langle f, g \rangle$ is a dense free subgroup of G. Basic open sets – $\{f \in Aut(X) : h \subset f\}$ where h is a partial isomorphism of X.

Theorem

Let $n \leq \omega$. The following groups $Aut(A_{\omega}) = S_{\infty}$, $Aut(B_n)$, $Aut(C_n)$ and Aut(D) are freely topologically 2-generated.

The case of S_{∞} and $Aut(\mathbb{Q}) = Aut(B_1)$ was deeply investigated by Darji and Mitchell.

Infinite countable homogeneous partial orders are freely topologically 2-generated

Enumerate all words by w_k , all partial isomorphisms by h_k , and all elements from B_n (or C_n or D) by q_k . We will define the sequence of partial isomorphisms f_i, g_i such that

(a)
$$f_{i-1} \subset f_i$$
 and $g_{i-1} \subset g_i$;

- (b) $q_i \in \operatorname{dom}(f_i) \cap \operatorname{rng}(f_i) \cap \operatorname{dom}(g_i) \cap \operatorname{rng}(g_i);$
- (c) there exists a word w such that dom $(h_i) \subset \text{dom}(w(f_i, g_i))$ and $w(f_i, g_i)_{| \text{dom}(h_i)} = h_i$;
- (d) there exists $x \in \text{dom}(w_i(f_i, g_i))$ such that $w_i(f_i, g_i)(x) \neq x$.
- (f) some technical assumption on f_i .

 $f = \bigcup_i f_i$ and $g = \bigcup_i g_i$

Infinite countable homogeneous partial orders are freely topologically 2-generated

Enumerate all words by w_k , all partial isomorphisms by h_k , and all elements from B_n (or C_n or D) by q_k . We will define the sequence of partial isomorphisms f_i, g_i such that

(a)
$$f_{i-1} \subset f_i$$
 and $g_{i-1} \subset g_i$;

- (b) $q_i \in \operatorname{dom}(f_i) \cap \operatorname{rng}(f_i) \cap \operatorname{dom}(g_i) \cap \operatorname{rng}(g_i);$
- (c) there exists a word w such that dom $(h_i) \subset$ dom $(w(f_i, g_i))$ and $w(f_i, g_i)_{| \text{dom}(h_i)} = h_i$;
- (d) there exists $x \in dom(w_i(f_i, g_i))$ such that $w_i(f_i, g_i)(x) \neq x$.
- (f) some technical assumption on f_i .

 $f = \bigcup_i f_i$ and $g = \bigcup_i g_i$

Infinite countable homogeneous partial orders are freely topologically 2-generated

Enumerate all words by w_k , all partial isomorphisms by h_k , and all elements from B_n (or C_n or D) by q_k . We will define the sequence of partial isomorphisms f_i, g_i such that

(a)
$$f_{i-1} \subset f_i$$
 and $g_{i-1} \subset g_i$;

- (b) $q_i \in \operatorname{dom}(f_i) \cap \operatorname{rng}(f_i) \cap \operatorname{dom}(g_i) \cap \operatorname{rng}(g_i);$
- (c) there exists a word w such that dom $(h_i) \subset \text{dom}(w(f_i, g_i))$ and $w(f_i, g_i)_{| \text{dom}(h_i)} = h_i$;
- (d) there exists $x \in dom(w_i(f_i, g_i))$ such that $w_i(f_i, g_i)(x) \neq x$.
- (f) some technical assumption on f_i .

 $f = \bigcup_i f_i$ and $g = \bigcup_i g_i$

Infinite countable homogeneous partial orders are freely topologically 2-generated

Enumerate all words by w_k , all partial isomorphisms by h_k , and all elements from B_n (or C_n or D) by q_k . We will define the sequence of partial isomorphisms f_i, g_i such that

(a)
$$f_{i-1} \subset f_i$$
 and $g_{i-1} \subset g_i$;

- (b) $q_i \in \operatorname{dom}(f_i) \cap \operatorname{rng}(f_i) \cap \operatorname{dom}(g_i) \cap \operatorname{rng}(g_i);$
- (c) there exists a word w such that $dom(h_i) \subset dom(w(f_i, g_i))$ and $w(f_i, g_i)_{| dom(h_i)} = h_i$;
- (d) there exists $x \in dom(w_i(f_i, g_i))$ such that $w_i(f_i, g_i)(x) \neq x$.

(f) some technical assumption on f_i .

 $f = \bigcup_i f_i$ and $g = \bigcup_i g_i$

Infinite countable homogeneous partial orders are freely topologically 2-generated

Enumerate all words by w_k , all partial isomorphisms by h_k , and all elements from B_n (or C_n or D) by q_k . We will define the sequence of partial isomorphisms f_i, g_i such that

(a)
$$f_{i-1} \subset f_i$$
 and $g_{i-1} \subset g_i$;

- (b) $q_i \in \operatorname{dom}(f_i) \cap \operatorname{rng}(f_i) \cap \operatorname{dom}(g_i) \cap \operatorname{rng}(g_i);$
- (c) there exists a word w such that $dom(h_i) \subset dom(w(f_i, g_i))$ and $w(f_i, g_i)_{| dom(h_i)} = h_i$;
- (d) there exists $x \in \text{dom}(w_i(f_i, g_i))$ such that $w_i(f_i, g_i)(x) \neq x$.

(f) some technical assumption on f_{i}

 $f = \bigcup_i f_i$ and $g = \bigcup_i g_i$

Infinite countable homogeneous partial orders are freely topologically 2-generated

Enumerate all words by w_k , all partial isomorphisms by h_k , and all elements from B_n (or C_n or D) by q_k . We will define the sequence of partial isomorphisms f_i, g_i such that

(a)
$$f_{i-1} \subset f_i$$
 and $g_{i-1} \subset g_i$;

- (b) $q_i \in \operatorname{dom}(f_i) \cap \operatorname{rng}(f_i) \cap \operatorname{dom}(g_i) \cap \operatorname{rng}(g_i);$
- (c) there exists a word w such that $dom(h_i) \subset dom(w(f_i, g_i))$ and $w(f_i, g_i)_{| dom(h_i)} = h_i$;
- (d) there exists $x \in \text{dom}(w_i(f_i, g_i))$ such that $w_i(f_i, g_i)(x) \neq x$.
- (f) some technical assumption on f_i .

 $f = \bigcup_i f_i$ and $g = \bigcup_i g_i$

Infinite countable homogeneous partial orders are freely topologically 2-generated

Enumerate all words by w_k , all partial isomorphisms by h_k , and all elements from B_n (or C_n or D) by q_k . We will define the sequence of partial isomorphisms f_i, g_i such that

(a)
$$f_{i-1} \subset f_i$$
 and $g_{i-1} \subset g_i$;

- (b) $q_i \in \operatorname{dom}(f_i) \cap \operatorname{rng}(f_i) \cap \operatorname{dom}(g_i) \cap \operatorname{rng}(g_i);$
- (c) there exists a word w such that $dom(h_i) \subset dom(w(f_i, g_i))$ and $w(f_i, g_i)_{| dom(h_i)} = h_i$;
- (d) there exists $x \in \text{dom}(w_i(f_i, g_i))$ such that $w_i(f_i, g_i)(x) \neq x$.
- (f) some technical assumption on f_i .

 $f = \bigcup_i f_i$ and $g = \bigcup_i g_i$

C_n , $n \in \mathbb{N}$ or $n = \omega$

Let $C_n = \{0, 1, ..., n-1\} \times \mathbb{Q}$. Define < on C_n so that (k, p) < (m, q) iff p < q. $F \in \operatorname{Aut}(C_n)^{<\omega}$ iff $F(k, q) = (\tau_q(k), f(q))$ where $\tau_q \in S_n^{<\omega}$ and $f \in \operatorname{Aut}(\mathbb{Q})^{<\omega}$. Technical assumption -F is positive, that is f(q) > q.

Lemma

Let $M \in \mathbb{Q}$, X be a finite subset of C_n and $F \in \operatorname{Aut}(C_n)^{<\omega}$ be positive. Then there is k and extension F_0 of F such that $\pi_2(F_0^k(X)) > M$.

Assume that $F \in \operatorname{Aut}(C_n)^{<\omega}$ is positive and $G, H \in \operatorname{Aut}(C_n)^{<\omega}$. Let $M \in \mathbb{Q}$ be 'above' X the union of domains and ranges of G, F and H. Using Lemma for X find k and extension F_0 of F such that $F_0^k(\operatorname{dom}(H))$ is 'above' M. Define the extension G_1 of G on $F_0^k(\operatorname{dom}(H))$ by $G_1(x) = F_1^k \circ H \circ F_1^{-k}(x)$. Then $H = F_1^{-k} \circ G_1 \circ F_1^k|_{\operatorname{dom}(H)} = w(F_1, G_1)|_{\operatorname{dom}(H)}$ where $w(a, b) = a^{-k}ba^k$.

Theorem

There are $F, G \in Aut(C_n)$ such that $\langle F, G \rangle$ is a free group and $\{F^k GF^{-k} : k \in \mathbb{Z}\}$ is dense in $Aut(C_n)$.

- < 同 > < 三 > < 三 >

Let $C_n = \{0, 1, ..., n-1\} \times \mathbb{Q}$. Define < on C_n so that (k, p) < (m, q) iff p < q. $F \in \operatorname{Aut}(C_n)^{<\omega}$ iff $F(k, q) = (\tau_q(k), f(q))$ where $\tau_q \in S_n^{<\omega}$ and $f \in \operatorname{Aut}(\mathbb{Q})^{<\omega}$. Technical assumption -F is positive, that is f(q) > q.

_emma

Let $M \in \mathbb{Q}$, X be a finite subset of C_n and $F \in \operatorname{Aut}(C_n)^{<\omega}$ be positive. Then there is k and extension F_0 of F such that $\pi_2(F_0^k(X)) > M$.

Assume that $F \in \operatorname{Aut}(C_n)^{<\omega}$ is positive and $G, H \in \operatorname{Aut}(C_n)^{<\omega}$. Let $M \in \mathbb{Q}$ be 'above' X the union of domains and ranges of G, F and H. Using Lemma for X find k and extension F_0 of F such that $F_0^k(\operatorname{dom}(H))$ is 'above' M. Define the extension G_1 of G on $F_0^k(\operatorname{dom}(H))$ by $G_1(x) = F_1^k \circ H \circ F_1^{-k}(x)$. Then $H = F_1^{-k} \circ G_1 \circ F_1^{k}|_{\operatorname{dom}(H)} = w(F_1, G_1)|_{\operatorname{dom}(H)}$ where $w(a, b) = a^{-k}ba^k$.

Theorem

There are $F, G \in Aut(C_n)$ such that $\langle F, G \rangle$ is a free group and $\{F^k GF^{-k} : k \in \mathbb{Z}\}$ is dense in $Aut(C_n)$.

- < 同 > < 三 > < 三 >

Let $C_n = \{0, 1, ..., n-1\} \times \mathbb{Q}$. Define < on C_n so that (k, p) < (m, q) iff p < q. $F \in \operatorname{Aut}(C_n)^{<\omega}$ iff $F(k, q) = (\tau_q(k), f(q))$ where $\tau_q \in S_n^{<\omega}$ and $f \in \operatorname{Aut}(\mathbb{Q})^{<\omega}$. Technical assumption -F is positive, that is f(q) > q.

_emma

Let $M \in \mathbb{Q}$, X be a finite subset of C_n and $F \in \operatorname{Aut}(C_n)^{<\omega}$ be positive. Then there is k and extension F_0 of F such that $\pi_2(F_0^k(X)) > M$.

Assume that $F \in \operatorname{Aut}(C_n)^{<\omega}$ is positive and $G, H \in \operatorname{Aut}(C_n)^{<\omega}$. Let $M \in \mathbb{Q}$ be 'above' X the union of domains and ranges of G, F and H. Using Lemma for X find k and extension F_0 of F such that $F_0^k(\operatorname{dom}(H))$ is 'above' M. Define the extension G_1 of G on $F_0^k(\operatorname{dom}(H))$ by $G_1(x) = F_1^k \circ H \circ F_1^{-k}(x)$. Then $H = F_1^{-k} \circ G_1 \circ F_1^{k}|_{\operatorname{dom}(H)} = w(F_1, G_1)|_{\operatorname{dom}(H)}$ where $w(a, b) = a^{-k}ba^k$.

Theorem

There are $F, G \in Aut(C_n)$ such that $\langle F, G \rangle$ is a free group and $\{F^k GF^{-k} : k \in \mathbb{Z}\}$ is dense in $Aut(C_n)$.

- < 同 > < 三 > < 三 >

Let $C_n = \{0, 1, ..., n-1\} \times \mathbb{Q}$. Define < on C_n so that (k, p) < (m, q) iff p < q. $F \in \operatorname{Aut}(C_n)^{<\omega}$ iff $F(k, q) = (\tau_q(k), f(q))$ where $\tau_q \in S_n^{<\omega}$ and $f \in \operatorname{Aut}(\mathbb{Q})^{<\omega}$. Technical assumption -F is positive, that is f(q) > q.

Lemma

Let $M \in \mathbb{Q}$, X be a finite subset of C_n and $F \in Aut(C_n)^{<\omega}$ be positive. Then there is k and extension F_0 of F such that $\pi_2(F_0^k(X)) > M$.

Assume that $F \in \operatorname{Aut}(C_n)^{<\omega}$ is positive and $G, H \in \operatorname{Aut}(C_n)^{<\omega}$. Let $M \in \mathbb{Q}$ be 'above' X the union of domains and ranges of G, F and H. Using Lemma for X find k and extension F_0 of F such that $F_0^k(\operatorname{dom}(H))$ is 'above' M. Define the extension G_1 of G on $F_0^k(\operatorname{dom}(H))$ by $G_1(x) = F_1^k \circ H \circ F_1^{-k}(x)$. Then $H = F_1^{-k} \circ G_1 \circ F_1^k|_{\operatorname{dom}(H)} = w(F_1, G_1)|_{\operatorname{dom}(H)}$ where $w(a, b) = a^{-k}ba^k$.

Theorem

There are $F, G \in Aut(C_n)$ such that $\langle F, G \rangle$ is a free group and $\{F^k GF^{-k} : k \in \mathbb{Z}\}$ is dense in $Aut(C_n)$.

- < 同 > < 三 > < 三 >

Let $C_n = \{0, 1, ..., n-1\} \times \mathbb{Q}$. Define < on C_n so that (k, p) < (m, q) iff p < q. $F \in \operatorname{Aut}(C_n)^{<\omega}$ iff $F(k, q) = (\tau_q(k), f(q))$ where $\tau_q \in S_n^{<\omega}$ and $f \in \operatorname{Aut}(\mathbb{Q})^{<\omega}$. Technical assumption -F is positive, that is f(q) > q.

Lemma

Let $M \in \mathbb{Q}$, X be a finite subset of C_n and $F \in Aut(C_n)^{<\omega}$ be positive. Then there is k and extension F_0 of F such that $\pi_2(F_0^k(X)) > M$.

Assume that $F \in \operatorname{Aut}(C_n)^{<\omega}$ is positive and $G, H \in \operatorname{Aut}(C_n)^{<\omega}$. Let $M \in \mathbb{Q}$ be 'above' X the union of domains and ranges of G, F and H. Using Lemma for X find k and extension F_0 of F such that $F_0^k(\operatorname{dom}(H))$ is 'above' M. Define the extension G_1 of G on $F_0^k(\operatorname{dom}(H))$ by $G_1(x) = F_1^k \circ H \circ F_1^{-k}(x)$. Then $H = F_1^{-k} \circ G_1 \circ F_1^k|_{\operatorname{dom}(H)} = w(F_1, G_1)|_{\operatorname{dom}(H)}$ where $w(a, b) = a^{-k}ba^k$.

Theorem

There are $F, G \in Aut(C_n)$ such that $\langle F, G \rangle$ is a free group and $\{F^k GF^{-k} : k \in \mathbb{Z}\}$ is dense in $Aut(C_n)$.

Let $C_n = \{0, 1, ..., n-1\} \times \mathbb{Q}$. Define < on C_n so that (k, p) < (m, q) iff p < q. $F \in \operatorname{Aut}(C_n)^{<\omega}$ iff $F(k, q) = (\tau_q(k), f(q))$ where $\tau_q \in S_n^{<\omega}$ and $f \in \operatorname{Aut}(\mathbb{Q})^{<\omega}$. Technical assumption -F is positive, that is f(q) > q.

Lemma

Let $M \in \mathbb{Q}$, X be a finite subset of C_n and $F \in Aut(C_n)^{<\omega}$ be positive. Then there is k and extension F_0 of F such that $\pi_2(F_0^k(X)) > M$.

Assume that $F \in \operatorname{Aut}(C_n)^{<\omega}$ is positive and $G, H \in \operatorname{Aut}(C_n)^{<\omega}$. Let $M \in \mathbb{Q}$ be 'above' X the union of domains and ranges of G, F and H. Using Lemma for X find k and extension F_0 of F such that $F_0^k(\operatorname{dom}(H))$ is 'above' M. Define the extension G_1 of G on $F_0^k(\operatorname{dom}(H))$ by $G_1(x) = F_1^k \circ H \circ F_1^{-k}(x)$. Then $H = F_1^{-k} \circ G_1 \circ F_1^k|_{\operatorname{dom}(H)} = w(F_1, G_1)|_{\operatorname{dom}(H)}$ where $w(a, b) = a^{-k}ba^k$.

Theorem

There are $F, G \in Aut(C_n)$ such that $\langle F, G \rangle$ is a free group and $\{F^k GF^{-k} : k \in \mathbb{Z}\}$ is dense in $Aut(C_n)$.

Let $C_n = \{0, 1, ..., n-1\} \times \mathbb{Q}$. Define < on C_n so that (k, p) < (m, q) iff p < q. $F \in \operatorname{Aut}(C_n)^{<\omega}$ iff $F(k, q) = (\tau_q(k), f(q))$ where $\tau_q \in S_n^{<\omega}$ and $f \in \operatorname{Aut}(\mathbb{Q})^{<\omega}$. Technical assumption -F is positive, that is f(q) > q.

Lemma

Let $M \in \mathbb{Q}$, X be a finite subset of C_n and $F \in Aut(C_n)^{<\omega}$ be positive. Then there is k and extension F_0 of F such that $\pi_2(F_0^k(X)) > M$.

Assume that $F \in \operatorname{Aut}(C_n)^{<\omega}$ is positive and $G, H \in \operatorname{Aut}(C_n)^{<\omega}$. Let $M \in \mathbb{Q}$ be 'above' X the union of domains and ranges of G, F and H. Using Lemma for X find k and extension F_0 of F such that $F_0^k(\operatorname{dom}(H))$ is 'above' M. Define the extension G_1 of G on $F_0^k(\operatorname{dom}(H))$ by $G_1(x) = F_1^k \circ H \circ F_1^{-k}(x)$. Then $H = F_1^{-k} \circ G_1 \circ F_1^k_{|\operatorname{dom}(H)} = w(F_1, G_1)_{|\operatorname{dom}(H)}$ where $w(a, b) = a^{-k}ba^k$.

Theorem

There are $F, G \in Aut(C_n)$ such that $\langle F, G \rangle$ is a free group and $\{F^k GF^{-k} : k \in \mathbb{Z}\}$ is dense in $Aut(C_n)$.

Let $C_n = \{0, 1, ..., n-1\} \times \mathbb{Q}$. Define < on C_n so that (k, p) < (m, q) iff p < q. $F \in \operatorname{Aut}(C_n)^{<\omega}$ iff $F(k, q) = (\tau_q(k), f(q))$ where $\tau_q \in S_n^{<\omega}$ and $f \in \operatorname{Aut}(\mathbb{Q})^{<\omega}$. Technical assumption -F is positive, that is f(q) > q.

Lemma

Let $M \in \mathbb{Q}$, X be a finite subset of C_n and $F \in \operatorname{Aut}(C_n)^{<\omega}$ be positive. Then there is k and extension F_0 of F such that $\pi_2(F_0^k(X)) > M$.

Assume that $F \in \operatorname{Aut}(C_n)^{<\omega}$ is positive and $G, H \in \operatorname{Aut}(C_n)^{<\omega}$. Let $M \in \mathbb{Q}$ be 'above' X the union of domains and ranges of G, F and H. Using Lemma for X find k and extension F_0 of F such that $F_0^k(\operatorname{dom}(H))$ is 'above' M. Define the extension G_1 of G on $F_0^k(\operatorname{dom}(H))$ by $G_1(x) = F_1^k \circ H \circ F_1^{-k}(x)$. Then $H = F_1^{-k} \circ G_1 \circ F_1^{k}|_{\operatorname{dom}(H)} = w(F_1, G_1)|_{\operatorname{dom}(H)}$ where $w(a, b) = a^{-k}ba^k$.

Theorem

There are $F, G \in Aut(C_n)$ such that $\langle F, G \rangle$ is a free group and $\{F^k G F^{-k} : k \in \mathbb{Z}\}$ is dense in $Aut(C_n)$.

Let $C_n = \{0, 1, ..., n-1\} \times \mathbb{Q}$. Define < on C_n so that (k, p) < (m, q) iff p < q. $F \in \operatorname{Aut}(C_n)^{<\omega}$ iff $F(k, q) = (\tau_q(k), f(q))$ where $\tau_q \in S_n^{<\omega}$ and $f \in \operatorname{Aut}(\mathbb{Q})^{<\omega}$. Technical assumption -F is positive, that is f(q) > q.

Lemma

Let $M \in \mathbb{Q}$, X be a finite subset of C_n and $F \in \operatorname{Aut}(C_n)^{<\omega}$ be positive. Then there is k and extension F_0 of F such that $\pi_2(F_0^k(X)) > M$.

Assume that $F \in \operatorname{Aut}(C_n)^{<\omega}$ is positive and $G, H \in \operatorname{Aut}(C_n)^{<\omega}$. Let $M \in \mathbb{Q}$ be 'above' X the union of domains and ranges of G, F and H. Using Lemma for X find k and extension F_0 of F such that $F_0^k(\operatorname{dom}(H))$ is 'above' M. Define the extension G_1 of G on $F_0^k(\operatorname{dom}(H))$ by $G_1(x) = F_1^k \circ H \circ F_1^{-k}(x)$. Then $H = F_1^{-k} \circ G_1 \circ F_1^k|_{\operatorname{dom}(H)} = w(F_1, G_1)|_{\operatorname{dom}(H)}$ where $w(a, b) = a^{-k}ba^k$.

Theorem

There are $F, G \in Aut(C_n)$ such that $\langle F, G \rangle$ is a free group and $\{F^k G F^{-k} : k \in \mathbb{Z}\}$ is dense in $Aut(C_n)$.

- 4 周 ト 4 戸 ト 4 戸 ト

Let $C_n = \{0, 1, ..., n-1\} \times \mathbb{Q}$. Define < on C_n so that (k, p) < (m, q) iff p < q. $F \in \operatorname{Aut}(C_n)^{<\omega}$ iff $F(k, q) = (\tau_q(k), f(q))$ where $\tau_q \in S_n^{<\omega}$ and $f \in \operatorname{Aut}(\mathbb{Q})^{<\omega}$. Technical assumption -F is positive, that is f(q) > q.

Lemma

Let $M \in \mathbb{Q}$, X be a finite subset of C_n and $F \in Aut(C_n)^{<\omega}$ be positive. Then there is k and extension F_0 of F such that $\pi_2(F_0^k(X)) > M$.

Assume that $F \in \operatorname{Aut}(C_n)^{<\omega}$ is positive and $G, H \in \operatorname{Aut}(C_n)^{<\omega}$. Let $M \in \mathbb{Q}$ be 'above' X the union of domains and ranges of G, F and H. Using Lemma for X find k and extension F_0 of F such that $F_0^k(\operatorname{dom}(H))$ is 'above' M. Define the extension G_1 of G on $F_0^k(\operatorname{dom}(H))$ by $G_1(x) = F_1^k \circ H \circ F_1^{-k}(x)$. Then $H = F_1^{-k} \circ G_1 \circ F_1^k|_{\operatorname{dom}(H)} = w(F_1, G_1)|_{\operatorname{dom}(H)}$ where $w(a, b) = a^{-k}ba^k$.

Theorem

There are
$$F, G \in Aut(C_n)$$
 such that $\langle F, G \rangle$ is a free group and $\{F^k G F^{-k} : k \in \mathbb{Z}\}$ is dense in $Aut(C_n)$.

一名 医下口 医下

$$G imes G^m
i (g, \overline{h}) \mapsto (gh_1g^{-1}, \dots, gh_mg^{-1}) \in G^m$$

is the diagonal action of G on G^m . We say that $\overline{h} \in G^m$ is cyclically dense for the diagonal action of G on G^m if for some $g \in G$, $\{(g^k h_1 g^{-k}, \ldots, g^k h_m g^{-k}) : k \in \mathbb{Z}\}$ is dense in G^m .

Theorem

The set of all cyclically dense $\overline{H} \in \text{Aut}(C_n)^m$ for the diagonal action of $\text{Aut}(C_n)$ on $\text{Aut}(C_n)^m$ is residual in $\text{Aut}(C_n)^m$.

The same is true for $Aut(B_{\omega})$ and Aut(D), but it is not true for $Aut(B_n)$, $1 < n < \omega$.

4 3 b

$$G \times G^m \ni (g, \overline{h}) \mapsto (gh_1g^{-1}, \dots, gh_mg^{-1}) \in G^m$$

is the diagonal action of G on G^m . We say that $\bar{h} \in G^m$ is cyclically dense for the diagonal action of G on G^m if for some $g \in G$, $\{(g^k h_1 g^{-k}, \ldots, g^k h_m g^{-k}) : k \in \mathbb{Z}\}$ is dense in G^m .

Theorem

The set of all cyclically dense $\overline{H} \in \text{Aut}(C_n)^m$ for the diagonal action of $\text{Aut}(C_n)$ on $\text{Aut}(C_n)^m$ is residual in $\text{Aut}(C_n)^m$.

The same is true for $Aut(B_{\omega})$ and Aut(D), but it is not true for $Aut(B_n)$, $1 < n < \omega$.

• = • •

$$G \times G^m \ni (g, \overline{h}) \mapsto (gh_1g^{-1}, \dots, gh_mg^{-1}) \in G^m$$

is the diagonal action of G on G^m . We say that $\overline{h} \in G^m$ is cyclically dense for the diagonal action of G on G^m if for some $g \in G$, $\{(g^k h_1 g^{-k}, \ldots, g^k h_m g^{-k}) : k \in \mathbb{Z}\}$ is dense in G^m .

Theorem

The set of all cyclically dense $\overline{H} \in \text{Aut}(C_n)^m$ for the diagonal action of $\text{Aut}(C_n)$ on $\text{Aut}(C_n)^m$ is residual in $\text{Aut}(C_n)^m$.

The same is true for $Aut(B_{\omega})$ and Aut(D), but it is not true for $Aut(B_n)$, $1 < n < \omega$.

$$G \times G^m \ni (g, \overline{h}) \mapsto (gh_1g^{-1}, \dots, gh_mg^{-1}) \in G^m$$

is the diagonal action of G on G^m . We say that $\overline{h} \in G^m$ is cyclically dense for the diagonal action of G on G^m if for some $g \in G$, $\{(g^k h_1 g^{-k}, \ldots, g^k h_m g^{-k}) : k \in \mathbb{Z}\}$ is dense in G^m .

Theorem

The set of all cyclically dense $\overline{H} \in \operatorname{Aut}(C_n)^m$ for the diagonal action of $\operatorname{Aut}(C_n)$ on $\operatorname{Aut}(C_n)^m$ is residual in $\operatorname{Aut}(C_n)^m$.

The same is true for $Aut(B_{\omega})$ and Aut(D), but it is not true for $Aut(B_n)$, $1 < n < \omega$.

$$G \times G^m \ni (g, \overline{h}) \mapsto (gh_1g^{-1}, \dots, gh_mg^{-1}) \in G^m$$

is the diagonal action of G on G^m . We say that $\overline{h} \in G^m$ is cyclically dense for the diagonal action of G on G^m if for some $g \in G$, $\{(g^k h_1 g^{-k}, \ldots, g^k h_m g^{-k}) : k \in \mathbb{Z}\}$ is dense in G^m .

Theorem

The set of all cyclically dense $\overline{H} \in \operatorname{Aut}(C_n)^m$ for the diagonal action of $\operatorname{Aut}(C_n)$ on $\operatorname{Aut}(C_n)^m$ is residual in $\operatorname{Aut}(C_n)^m$.

The same is true for Aut(B_{ω}) and Aut(D), but it is not true for Aut(B_n), $1 < n < \omega$.

$$G \times G^m \ni (g, \overline{h}) \mapsto (gh_1g^{-1}, \dots, gh_mg^{-1}) \in G^m$$

is the diagonal action of G on G^m . We say that $\overline{h} \in G^m$ is cyclically dense for the diagonal action of G on G^m if for some $g \in G$, $\{(g^k h_1 g^{-k}, \ldots, g^k h_m g^{-k}) : k \in \mathbb{Z}\}$ is dense in G^m .

Theorem

The set of all cyclically dense $\overline{H} \in \text{Aut}(C_n)^m$ for the diagonal action of $\text{Aut}(C_n)$ on $\text{Aut}(C_n)^m$ is residual in $\text{Aut}(C_n)^m$.

The same is true for $Aut(B_{\omega})$ and Aut(D), but it is not true for $Aut(B_n)$, $1 < n < \omega$.

Thank you for your attention

- T-

글 > - < 글 >